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Abstract

A homogenization theory for time!dependent deformation such as creep and viscoplasticity of nonlinear
composites with periodic internal structures is developed[ To begin with\ in the macroscopically uniform
case\ a rate!type macroscopic constitutive relation between stress and strain and an evolution equation of
microscopic stress are derived by introducing two kinds of Y!periodic functions\ which are determined by
solving two unit cell problems[ Then\ the macroscopically nonuniform case is discussed in an incremental
form using the two!scale asymptotic expansion of _eld variables[ The resulting equations are shown to be
e}ective for computing incrementally the time!dependent deformation for which the history of either
macroscopic stress or macroscopic strain is prescribed[ As an application of the theory\ transverse creep of
metal matrix composites reinforced undirectionally with continuous _bers is analyzed numerically to discuss
the e}ect of _ber arrays on the anisotropy in such creep[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The homogenization method based on the two!scale asymptotic expansion of _eld variables was
developed for composites with periodic or quasi!periodic internal structures "Bensoussan et al[\
0867^ Sanchez!Palencia\ 0879^ Bakhvalov and Panasenko\ 0878^ Kalamkarov\ 0881#[ This method
is e}ective for evaluating both macroscopic constitutive equations and microscopic distributions
of stress and strain in such composites[

The homogenization method mentioned above has been employed successfully to solve not only
elastic but also elastoplastic problems[ For example the method was applied to dynamics of
laminated elastic media "Murakami et al[\ 0870#\ elasticity with interfacial slip at interface "Lene
and Leguillon\ 0871#\ and linear thermoelasticity "Ene\ 0872^ Francfort\ 0872#[ Implementation of
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the method in adaptive _nite element analysis was described by Guedes and Kikuchi "0889#[
Homogenized constitutive equations of plasticity with internal variables were discussed in con!
junction of the method by Suquet "0872\ 0874#[ Moreover\ the method has been used for analyzing
nonlinear wave propagation "Murakami et al[\ 0881#\ elastoplastic constitutive properties of a unit
cell "Jansson\ 0881#\ _nite elastoplastic deformation of composites "Agah!Tehrani\ 0889^ Terada
et al[\ 0884#\ fracture of woven fabric composites "Takano and Zako\ 0884#\ and so on[

For time!dependent deformation\ on the other hand\ the homogenization method was applied
only to linear viscoelasticity and steady!state creep[ Linear viscoelasticity can be dealt with in the
same manner as in elasticity\ since the Laplace transformation allows the governing equations of
linear viscoelasticity to be reduced in e}ect to those of elasticity[ Use of the homogenization
method in this approach to linear viscoelasticity was described by Sanchez!Palencia "0879# and
Shibuya "0885#[ Linear thermoviscoelasticity of periodic composites was discussed rigorously on
the basis of the homogenization method by Francfort and Suquet "0875#[ The steady!state in creep
in structures can be analyzed in general by solving the analogous problem which is established by
replacing steady!state creep rate with plastic strain "Ho}\ 0843#[ Hence\ the homogenization
method extended for nonlinear elasticity "e[g[\ Jansson\ 0881# is applicable to analyzing the steady!
state creep behavior of unit cells with periodic boundary conditions[ In fact\ to verify a constitutive
model of steady!state creep of _ber!reinforced composites\ Aravas et al[ "0884# solved numerically
the analogous problem of unit cells on which the requirements of the homogenization method
were imposed[

The homogenization method based on the asymptotic expansion has an advantage that the
microscopic\ as well as the macroscopic\ stress and strain states in composites can be analyzed[
The method is thus in contrast to simple models e}ective for the overall behavior of composites[
Li and Weng "0886# proposed such a simple model for time!dependent deformation of composites
by introducing a linear viscoelastic comparison composite with secant viscosity[ Fotiu and Nemat!
Nasser "0885#\ on the other hand\ developed a numerical method to compute the overall behavior
of elasticÐviscoplastic periodic composites by expressing the variables in Fourier series to satisfy
the periodic condition[

This paper describes a homogenization theory for time!dependent deformation such as creep
and viscoplasticity of nonlinear composites with periodic internal structures within the framework
of in_nitesimal strain[ The theory is developed _rst in the macroscopically uniform case in a rate
form without recourse to the asymptotic expansion\ and then it is extended to the macroscopically
nonuniform case in an incremental form using the asymptotic expansion[ Thus a macroscopic
constitutive equation and a microscopic stress evolution equation are derived in rate and incremen!
tal forms by introducing two kinds of Y!periodic functions\ which are determined by solving two
unit cell problems[ As an application of the theory\ transverse creep of metal matrix composites
reinforced unidirectionally with continuous _bers is analyzed numerically by solving the unit cell
problems discretized with _nite elements\ so that the e}ect of _ber arrays on the anisotropy in the
transverse creep is discussed[

1[ Homogenization in macroscopically uniform case

To begin with\ let us consider a simple case in which a body V with a periodic internal structure
consisting of at least two constituents is subjected to macroscopically uniform strain and stress[
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Fig[ 0[ Periodic composite and representative unit cell[

The homogenized behavior of V then can be discussed by analyzing the smallest repeatable element\
i[e[\ unit cell Y\ shown in Fig[ 0[ Only in_nitesimal strain is assumed to take place in Y[

1[0[ Basic equations

Let us denote the distributions of stress and strain in the cell as sij"y\ t# and eij"y\ t#\ respectively\
where yi "i � 0\ 1\ 2# are the local rectangular coordinates taken for the unit cell Y\ and t indicates
time[ From now on sij and eij will be referred to as micro!stress and micro!strain\ respectively[
Equilibrium of micro!stress can be expressed in a rate form

1s¾ ij

1yj

� 9\ "0#

where the superposed dot denotes the di}erentiation with respect to time t[
The constituents of V are assumed to exhibit linear elasticity and nonlinear creep characterized

by

s¾ ij � cijkl ðeþkl−bkl"s#Ł\ "1#

where cijkl and bkl indicate\ respectively\ the elastic constants and creep functions of the constituents\
and they satisfy

cijkl � cjikl � cijlk � cklij\ "2#

bkl � blk[ "3#

Hereafter cijkl and bkl\ which can vary from constituent to constituent\ will be regarded as functions
of the local coordinates yi though not expressed explicitly[

The microscopic velocity _eld u¾i"y\ t# in Y in the case of macroscopically uniform deformation
has the following expression if Hij denotes the gradient of macroscopic displacement]

u¾i"y\ t# � Hþij"t#yj¦u¾0
i "y\ t#[ "4#

Then micro!strain rate e¾ij in eqn "1# is expressed as
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e¾ij � Eþij¦eij"y# "u¾0#\ "5#

where Eþij and eij"y#"u¾0# denote macro!strain rate and perturbed strain rate\ respectively]

Eþij �
0
1
"Hþij¦Hþ ji#\ "6#

eij"y# "u¾0# �
0
1 0

1u¾0
i

1yj

¦
1u¾0

j

1yi 1[ "7#

Since u¾0
i represents the perturbation of microscopic velocity u¾i from macroscopic one Hþijyj\ u¾0

i

satis_es the periodic condition resulting from the periodic internal structure[ Hence\ when u¾0
i is to

be found\ u¾0
i is required to be a function satisfying this periodic condition[ Such a function is called

Y!periodic[

1[1[ Solution for perturbed velocity _eld

Now\ on the supposition that the current distribution of micro!stress in Y\ sij"y\ t#\ is known\
we _nd the current _eld of perturbed velocity in Y\ u¾0

i "y\ t#\ which is Y!periodic and satis_es eqns
"0#\ "1# and "5#[

Let vi"y\ t# be an arbitrary\ Y!periodic velocity _eld de_ned in Y at t[ Then\ the use of the
integration by parts and the divergence theorem allows eqn "0# to be transformed to

gY

s¾ ijeij"y# "v# dY−gS

s¾ ijnjvi dS � 9\ "8#

where S denotes the boundary of Y\ and ni indicates the unit vector outward to S[ The second term
in the above equation vanishes because s¾ ij and vi are Y!periodic and ni takes opposite directions
on opposite boundary surfaces of Y[ Hence eqn "8# becomes

gY

s¾ ijeij"y# "v# dY � 9[ "09#

Since vi"y\ t# is considered to be a virtual _eld of u¾0
i \ the above equation can be interpreted as a

rate form of the principle of virtual work pertinent to unit cells of periodic composites[ Substitution
of eqns "1# and "5# into eqn "09# results in

gY

cijpqepq"y# "u¾0#eij"y# "v# dY � −Eþkl gY

cijkleij"y# "v# dY¦gY

cijklbkl"s#eij"y# "v# dY[ "00#

Consequently\ the problem to _nd u¾0
i "y\ t# is restated as follows] on the supposition that the current

distribution of micro!stress in Y\ sij"y\ t#\ is known\ we _nd the current _eld of perturbed velocity
in Y\ u¾0

i "y\ t#\ which is Y!periodic and satis_es eqn "00# for any Y!periodic velocity _eld vi"y\ t#
de_ned in Y at t[

Now let xkl
i and 8i be the functions which are determined by solving the following boundary

value problems for the unit cell Y\ respectively]
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gY

cijpqepq"y# "xkl#eij"y# "v# dY � gY

cijkleij"y# "v# dY with Y!periodicity of xkl
i \ "01#

gY

cijpqepq"y# "8#eij"y# "v# dY � gY

cijklbkl"s#eij"y# "v# dY with Y!periodicity of 8i\ "02#

where vi"y\ t# is any Y!periodic velocity _eld in Y at t[ Then eqn "00#\ in which u¾0
i depends linearly

on Eþkl through the _rst term in the right hand side\ has a solution

u¾0
i "y\ t# � −xkl

i "y#Eþkl"t#¦8i"y\ t#[ "03#

It is noticed that xkl
i is a function of only yj because xkl

i results from the distribution of cpqrs in Y\
as seen from eqn "01#[ This is in contrast to 8i"y\ t# de_ned by eqn "02#\ in which cpqrsbrs"s# is a
function of yj and t because of sij"y\ t#[ It is also noticed that eqns "01# and "02# are not reduced
identically to epq"y#"xkl# � dpkdql and epq"y#"8# � bpq"s#\ respectively[ This is because the compatibility
condition of strain "rate# does not allow the components of eij"y#"v# to distribute arbitrarily in Y
while vi"y\ t# can be an arbitrary velocity _eld satisfying the Y!periodicity[

1[2[ Micro!stress evolution equation and macroscopic constitutive relation

Substitution of eqns "5# and "03# into eqn "1# gives an evolution equation of micro!stress such
as

s¾ ij"y\ t# � aijkl"y#Eþkl"t#−rij"y\ t#\ "04#

where

aijkl � cijpq ðdpkdql−epq"y# "xkl#Ł\ "05#

rij � cijkl ðbkl"s#−ekl"y# "8#Ł[ "06#

Here and from now on dij indicates Kronecker|s delta[
Now let us introduce a volume average operator

ðèŁ �
0

=Y= gY

è dY\ "07#

where =Y= denotes the volume of the unit cell Y[ Then eqn "04# becomes a rate!type macroscopic
constitutive equation

Sþij � ðaijklŁEþkl−ðrijŁ\ "08#

where Sþij indicates the macro!stress rate de_ned as

Sþij � ðs¾ ijŁ[ "19#

Moreover\ taking the volume average of eqn "5# and using the divergence theorem and the Y!
periodicity of u¾0

i \ we have

Eþij � ðeþijŁ[ "10#
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Then\ the solution "03#\ the microscopic stress evolution equation "04# and the rate!type macro!
scopic constitutive relation "08#\ in combination with eqns "01# and "02# to determine the Y!
periodic functions xkl

i and 8i\ enable us to _nd u¾0
i "y\ t#\ s¾ ij"y\ t# and either Sþij"t# or Eþij"t# if sij"y\ t#\

is known and either Eþij"t# or Sþij"t# is given[ Consequently\ the homogenized deformation behavior
of V subjected to a prescribed history of either Eij"t# or Sij"t# can be computed incrementally\ as
will be described in detail in Section 3[

Before moving on to the next section\ let us interpret the resulting equations physically[ Equation
"1# allows the constituents to deform elastically when strain changes very quickly[ This means that
the _rst terms in the right!hand!sides in eqns "03#\ "04# and "08# represent the elastic changes of
u0

i \ sij and Sij\ respectively\ whereas the second terms in them are regarded as expressing the e}ects
of viscosity[ Especially ðaijklŁ and ðrijŁ in eqn "08# are interpreted as the macroscopic elastic
sti}ness matrix and the macroscopic stress relaxation rate under constant macro!strain\ respec!
tively[

2[ Homogenization based on asymptotic expansion

The homogenization problem dealt with in the macroscopically uniform case in the preceding
section is discussed here more generally on the basis of the two!scale asymptotic expansion method
"Bensoussan et al[\ 0867^ Sanchez!Palencia\ 0879^ Bakhvalov and Panasenko\ 0878^ Kalamkarov\
0881#[ In this section\ we consider an incremental formulation\ in which the constitutive relation
"1# is expressed as

Dsij � cijkl ðDekl−bkl"st¦UDt#DtŁ\ "11#

where D indicates increments in a time step from t to t¦Dt\ st¦UDt denotes the stress at t¦UDt\
and 9 ¾ U ¾ 0[

2[0[ Global and local coordinates

A body V with a periodic internal structure is now subjected to prescribed traction TÞi on a part
of the boundary\ GT\ and prescribed displacement u¹i on the other part Gu\ as shown in Fig[ 1[ Let

Fig[ 1[ Global and local problems with two spatial scales[
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xi "i � 0\ 1\ 2# be the global rectangular coordinates to analyze the macroscopic behavior of V\ and
let us suppose that the size l of the unit cell Y is much smaller than the size L of V]

o �
l
L

ð 0[ "12#

Then\ the _eld variables such as stress and strain can vary rapidly in the small scale l and slowly
in the large scale L[ In order to represent such rapid variations explicitly\ the asymptotic expansion
method introduces the local coordinates yi as

yi �
xi

o
[ "13#

Consequently\ the unit cell Y is magni_ed to have the same size as V[ It is then convenient to
employ the global and local coordinates\ xi and yi\ for representing the slow and rapid variations
taking place macroscopically in V and microscopically in Y\ respectively[ Thus\ stress\ strain and
displacement are expressed as sij"x\ y\ t#\ eij"x\ y\ t# and ui"x\ y\ t#[

When yi is employed in addition to xi\ we have the chain rule for spatial gradient\
d:dx � 1:1x¦o−0 1:1y\ so that the equilibrium equation of stress increments and the relation
between strain and displacement increments take forms

1Dsij

1xj

¦
0
o

1Dsij

1yj

� 9\ "14#

Deij � eij"x# "Du#¦
0
o
eij"y# "Du#[ "15#

2[1[ Asymptotic expansion

The two!scale asymptotic expansion provides displacement increment Dui with the expression

Dui"x\ y\ t# � Du9
i "x\ t#¦oDu0

i "x\ y\ t#¦o1Du1
i "x\ y\ t#¦= = = \ "16#

where Du9
i represents macroscopic displacement increment\ and Du0

i \ Du1
i \ etc[ are local per!

turbations satisfying the Y!periodic condition[ Then substitution of eqn "16# into "15# gives

Deij � eij"x# "Du9#¦eij"y# "Du0#¦oðeij"x# "Du0#¦eij"y# "Du1#Ł¦= = = [ "17#

Comparison of eqns "5# and "17# shows that the _rst two terms in the right!hand!side in eqn "17#
are material in the macroscopically uniform case^ in other words\ the terms of order o\ o1 and so
on arise from the nonuniformity of macroscopic deformation[ It is then suggested that stress
increment can be asymptotically expanded similarly to eqn "17#]

Dsij"x\ y\ t# � Ds0
ij"x\ y\ t#¦oDs1

ij"x\ y\ t#¦= = = \ "18#

where the _rst term in the right!hand!side remains as micro!stress increment in the macroscopically
uniform case[

Then\ substituting eqn "18# into the incremental constitutive relation "11#\ we have
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Ds0
ij¦oDs1

ij¦= = = � cijkl ðDekl−bkl"st¦UDt#DtŁ\ "29#

where

bkl"st¦UDt# � bkl"s0
t #¦Gklrs"s0

t #ðUDs0
rs¦o"s1

rs¦UDs1
rs#¦= = = Ł\ "20#

Gklrs"s# �
1bkl"s#
1srs

[ "21#

Substituting further eqn "17# into eqn "29#\ and collecting terms of the same order with respect to
o\ we obtain

Ds0
ij � c½ijkl ðekl"x# "Du9#¦ekl"y# "Du0#−bkl"s0

t #DtŁ\ "22#

Ds1
ij � c½ijkl ðekl"x# "Du0#¦ekl"y# "Du1#−Gklrs"s0

t #s1
rsDtŁ\ "23#

where

c½ijkl � ððcijklŁ−0¦UGijkl"s0
t #DtŁ−0[ "24#

Moreover\ use of eqn "18# changes eqn "14# into

0
o

1Ds0
ij

1yj

¦0
1Ds0

ij

1xj

¦
1Ds1

ij

1yj 1¦= = = � 9[ "25#

Hence it is seen that stress increments Ds0
ij and Ds1

ij satisfy

1Ds0
ij

1yj

� 9\ "26#

1Ds0
ij

1xj

¦
1Ds1

ij

1yj

� 9[ "27#

2[2[ Microscopic and macroscopic equations

Equations "22# and "26#\ which were obtained from the leading order terms in eqns "29# and
"25#\ are nothing but eqns "0# and "1# with eqn "5#\ which were employed as the basic equations
in the macroscopically uniform case[ Therefore\ in the same way as in the preceding section\ it can
be shown that eqns "22# and "26# are combined and transformed to

gY

c½ijpqepq"y# "Du0#eij"y# "v# dY � −ekl"x# "Du9# gY

c½ijkleij"y# "v# dY¦Dt gY

c½ijklbkl"s0
t #eij"y# "v# dY\

"28#

where vi"x\ y\ t# is an arbitrary\ Y!periodic velocity _eld de_ned in each Y at x and t[ Let x	kl
i and 8½ i

be the functions determined\ respectively\ by solving

gY

c½ijpqepq"y# "x½ kl#eij"y# "v# dY � gY

c½ijkleij"y# "v# dY with Y!periodicity of x½ kl
i \ "39#
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gY

c½ijpqepq"y# "8½ #eij"y# "v# dY � gY

c½ijklbkl"s0
t #eij"y# "v# dY with Y!periodicity of 8½ i\ "30#

where vi"x\ y\ t# is any Y!periodic velocity _eld in each Y at x and t[ Then eqn "28# has the following
solution similar to eqn "03#]

Du0
i "x\ y\ t# � −x½ kl

i "x\ y\ t#ekl"x# "Du9"x\ t##¦8½ i"x\ y\ t#Dt[ "31#

It is noticed that not only 8½ i but also x½ kl
i are functions of xj\ yj and t because in eqns "39# and "30#

c½ijpq depends on s0
t "x\ y\ t# as expressed in eqn "24#[

Then\ substitution of eqn "31# into eqn "22# gives an incremental evolution equation of s0
ij\

Ds0
ij � a½ijklekl"x# "Du9#−r½ijDt\ "32#

where

a½ijkl � c½ijpq ðdpkdql−epq"y# "x½ kl#Ł\ "33#

r½ij � c½ijkl ðbkl"s0
t #−ekl"y# "8½ #Ł[ "34#

Using the volume average operator "07#\ eqn "32# is transformed into a macroscopic constitutive
relation

DSij � ða½ijklŁDEkl−ðr½ijŁDt\ "35#

where DSij and DEkl are de_ned as

DSij � ðDs0
ijŁ\ "36#

DEkl � ekl"x# "Du9#[ "37#

The resulting equations above enable us to analyze incrementally the homogenized behavior in
time!dependent deformation of V\ as will be described in detail in Section 3[ It is noticed that DSij

de_ned by eqn "36# satis_es the equilibrium equation in the macroscopic scale^ i[e[\ taking the
volume average of eqn "27# in Y and using the Y!periodicity of Ds1

ij\ we _nd that

1DSij

1xj

� 9[ "38#

3[ Computational procedure

The time!dependent behavior of nonlinear composites with periodic internal structures can be
computed incrementally using eqns "39#Ð"37#\ which replace the corresponding equations in Section
1 if eqn "11# is employed instead of eqn "1# there[ This section is devoted to the procedure of
such computation\ though only the macroscopically uniform case to evaluate the homogenized
constitutive relation is considered here[ The procedure needs eqns "39# and "30# to be solved for
_nding the Y!periodic functions x½ kl

p and 8½ k at the beginning in each time step[ These equations can
be solved numerically by means of a _nite element method in which the Y!periodicity is imposed
on x½ kl

p and 8½ k using the penalty method "see Appendix A#[
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Let us suppose that the unit cell Y to be analyzed is divided into _nite elements with integration
points\ that micro!stress at current time t\ s0

t \ is known at the integration points\ and that the
history of either macro!stress Sij or macro!strain Eij\ or a combination of them\ is prescribed[
Then\ the incremental computation from the current time t to the subsequent time t¦Dt can be
done as follows]

"0# Calculating c½ijpq and bkl"s0
t # at the integration points in Y\ and solving eqns "39# and "30#\ we

determine the Y!periodic functions x½ kl
i and 8½ i[

"1# We calculate a½ijkl and r½ij at the integration points using eqns "33# and "34#\ and then we average
them in Y to obtain ða½ijklŁ and ðr½ijŁ[

"2# Using eqn "35# with prescribed components of DEij and DSij\ we determine unprescribed
components of DEij and DSij[

"3# We calculate micro!stress increment Ds0
ij using eqns "32# and "37#[

"4# Adding the increments to the current values\ we proceed to the next time step[

4[ Examples of numerical analysis

As an application of the present theory\ transverse creep of metal matrix composites reinforced
unidirectionally with continuous _bers was analyzed numerically to discuss the e}ect of _ber
arrangement on the anisotropy in the macroscopic creep behavior[ It seems that such an e}ect has
not been analyzed yet with respect to creep and plasticity[

4[0[ Fiber arran`ement\ material properties and loadin` condition

Two types of _ber arrangement\ i[e[\ square and hexagonal arrays were considered for the
composites analyzed in this work "Fig[ 2#[ It was assumed that the composites were under the
plane!strain condition in the _ber direction and subjected to transverse macro!stress such as

Fig[ 2[ Unit cell and loading direction^ "a# square array\ "b# hexagonal array[
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Sjj � constant\ Sjh � Shh � 9\ "49#

where j and h denote the loading coordinate axes making an angle u with the material coordinate
axes y0 and y1 "Fig[ 2#[

The _bers were assumed to obey Hooke|s law

eij �
0¦nf

Ef

sij−
nf

Ef

skkdij\ "40#

where nf and Ef are material constants[ The matrix\ on the other hand\ was assumed to exhibit
power!law creep in addition to linear elasticity\ i[e[\

e¾ij �
0¦nm

Em

s¾ ij−
nm

Em

s¾ kkdij¦
2
1

Asn−0
eq sij\ "41#

where nm\ Em\ A and n are material constants\ sij indicates the deviatoric part of micro!stress sij\
and seq � ð"2:1#sijsijŁ0:1[

For convenience in computation\ the following nondimensional stresses\ strains and time were
introduced]

s�ij �
sij

s9

\ S�ij �
Sij

s9

\ e�ij �
Efeij

s9

\ E�ij �
EfEij

s9

\ t� � AEfs
n−0
9 t\ "42#

where s9 indicates an appropriate reference stress[ Equations "40# and "41# were then non!
dimensionalized as

e�ij �"0¦nf#s�ij−nfs�kkdij\ "43#

1e�ij
1t�

�
Ef

Em $"0¦nm#
1s�ij
1t�

−nm

1s�kk

1t�
dij%¦

2
1
"s�eq#n−0s�ij\ "44#

where s�ij indicates the deviatoric part of s�ij and s�eq � ð"2:1#s�ijs�ijŁ0:1[ Consequently the material
parameters to be speci_ed in computation were Ef:Em\ nf\ nm and n in addition to the _ber volume
fraction Vf[ By supposing a titanium alloy reinforced with continuous SiC _bers "Kroupa and
Neu\ 0883#\ they were chosen as

Ef

Em

� 3\ nf � 9[14\ nm � 9[23\ n � 3\ Vf � 9[284[ "45#

A 1!D _nite element program was developed to solve eqns "39# and "30# and to perform the
computational procedure described in Section 3[ In the program\ four node isoparametric elements
with 1×1 Gaussian integration points were used\ and the penalty method was utilized to impose
the Y!periodic boundary condition on x½ kl

p and 8½ k "Appendix A#[ Figures 3"a# and "b# show the
unit cells and _nite element meshes used for the square and hexagonal arrays in this work\
respectively[
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Fig[ 3[ Finite element mesh^ "a# square array\ "b# hexagonal array[
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Fig[ 4[ Changes of equivalent macro!strain with time in tensile creep at S�jj � 0 under plane strain condition^ "a# square
array\ "b# hexagonal array[

4[1[ Results of numerical analysis

The time!dependent changes of macro!strain for the square and hexagonal arrays are shown in
Figs 4"a# and "b#\ respectively\ the ordinates of which are taken to be the nondimensional equivalent
strain de_ned as
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E�eq �"1
2
E�ijE�ij#0:1[ "46#

It is seen from Figs 4"a# and "b# that the square and hexagonal arrays exhibit signi_cant and
negligible anisotropy in transverse creep\ respectively[ For the square array\ strain for u � 34> is
about six times larger than that for u � 9> "Fig[ 4"a##[ This di}erence is very large\ but it is noticed
that the di}erence is only 00) with respect to elastic strain at t � 9[ Hence we can say that the
nonlinearity in creep magni_es outstandingly the transverse anisotropy in the case of the square
array[ For the hexagonal array\ on the other hand\ the creep curves calculated for u � 9> and
u � 29> are almost the same\ so that the creep behavior is nearly isotropic "Fig[ 4"b##[ It can be
proved that the homogenized behavior in transverse creep of hexagonally _ber!arrayed composites
is invariant under the 29> rotation of the loading direction if the e}ect of hydrostatic stress is
macroscopically negligible "Appendix B#^ of course\ the material symmetry in the hexagonal array
allows it to be invariant under the 59> rotation of the loading direction[ Incidentally\ the hexagonal
symmetry makes the elastic behavior transversely isotropic macroscopically\ which is similar to
the in!plane quasi isotropy in laminated plates of 9>:259> "Christensen\ 0868#[

It is also seen from Figs 4"a# and "b# that transient creep takes place very noticeably\ and that
transient creep strain becomes much larger before reaching the steady state than initial elastic
strain[ This suggests that it is not su.cient to analyze only the steady state in creep\ and that the
analysis of transient creep as in the present work is important[ Let us point out that the transient
creep in the _gures is entirely due to the load transfer from the matrix to the _bers because any
strain hardening of the matrix is not taken into account in eqn "41#[

Figure 5 shows the relations between the maximum principal directions of macro!stress and
macro!strain rate\ FS and FEþ\ at the nondimensional time of t� � 0499 obtained in the present
analysis of tensile creep[ Here FS and FEþ indicate the angles which the maximum principal
directions make with the y0!axis[ It is seen from the _gure that the data for the square array\ except
for u � 9> and u � 34>\ deviate from the line of FS � FEþ whereas the data for the hexagonal array
lie almost completely on the line[ Since the line indicates transverse isotropy\ the relations between
FS and FEþ in Fig[ 5 also con_rm that the square and hexagonal arrays exhibit signi_cant and
negligible anisotropy in transverse creep\ respectively[

Finally we are concerned with the microscopic state of deformation in the unit cells[ Figures
6"a#Ð"d# show the deformed meshes of the unit cells at t� � 0499 in the two representative cases
of u � 9> and u � 34>[ As seen from the _gures\ the matrix exhibits signi_cant deformation due to
creep\ which is in contrast to little elastic deformation in the _bers[ This suggests that macroscopic
deformation proceeds almost incompressibly with time for both the square and hexagonal arrays[
It is also seen from the _gures that some _nite elements in the matrix near the _ber:matrix interface
are deformed noticeably by shear resulting from the di}erence of rigidity between the matrix and
the _bers[ Figures 7"a#Ð"d# depict the distributions of microscopic creep strain at t� � 0499 with
respect to the equivalent value ec�

eq\ which is de_ned in terms of the creep component ec�
ij of

nondimensional micro!strain e�ij as ec�
eq � ð"1:2#ec�

ij e
c�
ij Ł0:1[ For the square array\ creep strain con!

centrates near the _ber in the case of u � 9> whereas in the case of u � 34> it takes place markedly
even near the cell corners "Figs 7"a# and "b##[ This di}erence accounts for small and large values
of macroscopic creep strain in the two cases shown in Fig[ 4"a#[ For the hexagonal array\ on the
other hand\ creep strain distributes fairly broadly in the matrix\ as shown in Figs 7"c# and "d#\
where it is noticed that the two cases of u � 9> and u � 34> have considerably di}erent distributions
of microscopic creep strain in spite of nearly the same macroscopic creep curves in Fig[ 4"b#[
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Fig[ 5[ Relation between the maximum principal direction of macro!stress\ FS\ and that of macro!strain rate\ FEþ at
t� � 0499 in tensile creep at S�jj � 0 under plane strain condition^ FS and FEþ are the angles measured from the y0!axis[

5[ Conclusions

A homogenization theory for time!dependent deformation such as creep and viscoplasticity of
nonlinear composites with periodic internal structures was described within the framework of
in_nitesimal strain[ The theory was developed _rst in the macroscopically uniform case in a rate
form without recourse to the asymptotic expansion of _eld variables\ and then it was extended to
the macroscopically nonuniform case in an incremental form using the asymptotic expansion[
Thus a homogenized constitutive equation and a microscopic stress evolution equation were
derived in rate and incremental forms by de_ning two kinds of Y!periodic functions determined
by solving two unit cell problems[ Then it was shown that the theory enables us to compute
incrementally the time!dependent deformation behavior by discretizing unit cells with _nite
elements\ and that the theory is e}ective for problems in which the history of either macro!stress
or macro!strain\ or a combination of them\ is prescribed[ As an application of the theory\ transverse
creep of metal matrix composites reinforced unidirectionally with continuous _bers was analyzed
for square and hexagonal _ber arrays[ Consequently it was found that the square and hexagonal
arrays exhibit signi_cant and negligible anisotropy in the transverse creep\ respectively[

Let us emphasize that the rate and incremental approaches employed in the present work for
time!dependent nonlinear composites were not taken in the previous works on homogenization
for linear viscoelastic composites by Sanchez!Palencia "0879#\ Francfort and Suquet "0875# and
Shibuya "0885#[
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Fig[ 6[ Deformation of unit cell at t� � 0499 in tensile creep at S�jj � 0 under plane strain condition^ "a# square array
"u � 9>#\ "b# square array "u � 34>#\ "c# hexagonal array "u � 9>#\ "d# hexagonal array "u � 34>#[
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Fig[ 6 "continued#[
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Fig[ 7[ Contours of equivalent micro!creep strain at t� � 0499 in tensile creep at S�jj � 0 under plane strain condition^
"a# square array "u � 9>#\ "b# square array "u � 34>#\ "c# hexagonal array "u � 9>#\ "d# hexagonal array "u � 34>#[
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Fig[ 7 "continued#[
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Fig[ 8[ Equivalence between the loading directions of u � 29>−u9 and u � u9 under pure shear^ "a# u � 29>−u9\
"b# u � 89>−u9\ "c# u � u9[
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Appendix A

Equations "39# and "30# were cast into the following forms for the _nite element analysis in the
present work by referring to Zienkiewicz and Taylor "0876#]

0gY

ðBŁTðC	Ł ðBŁ dY¦lðLŁTðLŁ1"x½ kl# � gY

ðBŁT"C	kl# dY\ "A0#

0gY

ðBŁTðC	Ł ðBŁ dY¦lðLŁTðLŁ1 "8½ # � gY

ðBŁTðC	Ł"b# dY\ "A1#

where the supposed T denotes the transpose\ ðBŁ the strain matrix\ ðC	Ł the sti}ness matrix rep!
resenting c½ijkl\ "x½ kl# and "8½ # the nodal values of x½ kl

i and 8½ i\ respectively\ "C	kl# the vector consisting
of c½ijkl with given k and l\ "b# the vector for creep rate bij"s0

t #\ l the penalty number\ and ðLŁ the
constraint matrix to impose the Y!periodic condition on x½ kl

i and 8½ i at the boundary of Y[ The
nodal values of x½ kl

i and 8½ i were set to be zero at one corner of the boundary of Y[

Appendix B

Let us consider pure shear creep of hexagonally _ber!arrayed composites subjected to Sjh � con!
stant and Sjj � Shh � 9 "Figs 8"a# to "c##[ Then\ because of the material symmetry\ the pure shear
creep of u � 29>−u9 shown in Fig[ 8"a# is identical to that of u � 89>−u9 in Fig[ 8"b#\ where
9 ¾ u9 ¾ 04>[ The pure shear creep of u � 89>−u9 is re~ected with respect to the y1!axis\ resulting
in the pure shear creep of u � u9 shown in Fig[ 8"c#[ In the pure shear creep\ therefore\ hexagonally
_ber!arrayed composites exhibit the same behavior in the two loading directions of u � 29>−u9

and u � u9[
Now we suppose that deformation is macroscopically incompressible[ Then\ the pure shear creep

discussed above has the same principal macro!strains in ratio as the plane strain tensile creep
analyzed in the present work[ Consequently the proof above allows us to say that the plane strain
tensile creep of hexagonally _ber!arrayed composites has macroscopically no di}erence between the
two loading directions of u � 29>−u9 and u � u9 if deformation is macroscopically incompressible[
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